+7 (967) 233-32-50
                viktoriy-agro@bk.ru

Заказать обратный звонок

Новая система земледелия. И.Е. Овсинский

Глава 3. Источники питания растений: атмосфера и почва

       Перечисленные в предыдущей главе питательные вещества находятся в меньшей степени в атмосфере, и в большей -  в почве.

     Атмосфера состоит из смеси газов, в которой присутствуют твердые тела в виде пыли, вместе с чрезвычайно  важными для земледелия спорами бактерий. Самую главную часть атмосферы составляет механическая смесь из 20,81 частей кислорода и 79,19 частей азота, называемая воздухом. Как видим, воздух представляет собой громаднейший запасник самого дорогого из питательных веществ растений – азота.

     Кроме азота и кислорода в атмосфере и другие газы. Так, например, под влиянием сильного электрического разряда кислород принимает форму, которая называется озоном, и отличается от кислорода характерным запахом и специфическими свойствами. Озон всегда присутствует в атмосфере, но в разных количествах, в зависимости от времени и места.

     Кроме озона атмосфера содержит в себе углекислый газ, который в 1,25 раза тяжелее воздуха, а содержание его по объему в атмосфере составляет 0,0002-0,0005 частей. Здесь также присутствует окись углерода, азотная кислота и азотнокислые соединения, аммиак, углеводороды, сернистый водород и фосфорный водород.

       Азотная кислота и азотнокислые соединения образуются под воздействием электрической искры (молнии) на влажную смесь азота и кислорода (воздуха), или в почве при постепенном разложении азотистых веществ. Азотная кислота находится в растворе, или в свободном состоянии, или же в соединениях (солях), большей частью аммиачных.

       Углеводород (болотный газ) и сернистый водород выделяются при разложении органической материи, равно как фосфорный водород, освобождающийся, в особенности после жарких летних дней, из торфяных болот и кладбищ. Газ этот загорается в воздухе, пылая небольшим голубоватым пламенем (ложные огоньки).

      Из твердых тел в атмосфере мы находим в водяных парах (образующих тучи и облака и возвращающихся на землю в виде дождя, града или снега, а также росы и инея) соль. Обнаружены также присутствие йода, крахмала, фосфора, органических частиц материи и блуждающие споры тайнобрачных растений.

       Вообще-то, содержащие органических и неорганических веществ в атмосфере в некоторых случаях бывает достаточным для обеспечения питания растений без почвы. «Следует заметить,- пишет профессор Бердо, - что и сам воздух, хотя в небольшой степени, содержит в себе составные части почвы. Атмосферный воздух состоит не только из смеси известных газов (азота и кислорода с небольшой примесью углерода), но он также содержит в себе водяные пары вместе с некоторым количеством минеральных веществ обогащающих в достаточном количестве, чтобы обеспечить питанием некоторые растения, как, например, лишайники или некоторые тропические орхидеи, служащие настоящим украшением наших оранжерей, когда качаются в них красиво подвешенными и едва прикрытыми мхом».

     Однако культурным растениям атмосфера служит главной поставщицей углерода, азота, водорода, кислорода и чрезвычайно важной для жизни растений – воды.

      Остальные из важнейших химических элементов растений (см. главу 1) фосфор, калий, кальций, сера, магний, а также менее важные элементы, получают растения из почвы, которая содержит также большое количество азота в органических веществах.

     Материк образовался из скал, которые разрушились под влиянием атмосферных факторов и создали почву, способную питать растения. Явление это произошло под совместным влиянием кислорода, угольной кислоты, воды, колебаний температуры, выделений корней растений, перегнойных кислот и, наконец, бактерий. Факторы эти действуют издавна. Усиление их действия является в настоящее время самой главной задачей земледельческого труда.

     Рассматривая более подробно причины разрушения скал под влиянием перечисленных факторов, мы находим два рода явлений: одни из них физического, другие же химического свойства. К первым принадлежит действие воды совокупно с колебаниями температуры. Вода, которая пропитывает поверхность скалы, увеличивает свой объем на 1/10 и вследствие этого развивает громадное давление, разрушающее самые твердые скалы. Части, образовавшиеся под действием замерзающей воды, подвергаются химическим воздействиям атмосферного кислорода и угольной кислоты, вследствие чего разрушение горной породы ускоряется. Нужно отметить, что разрыхление породы только температурой, без участия химических и биологических факторов, представляет собой очень медленный процесс. Отметить это необходимо ввиду того, что мы придаем слишком большое значение действию мороза на зябь и забываем, что мороз задерживает деятельность бактерий и химические процессы в почве, что значительно уменьшает разрушающее действие мороза. В тропиках, где морозов нет, плодородная почва образуется несравненно быстрее, чем вблизи полюсов, где господствуют морозы.

     Пахотная земля образовалась и постоянно образуется под сильным влиянием биологических и химических факторов. Процесс этот совершается с большей или меньшей скоростью в зависимости от химического состава скал и интенсивности действия факторов, производящих выветривание. Труднее поддаются выветриванию монолитные горные породы, состоящие, например, из кварца или известняка. Скалы же, образованные сочетанием различных глубинных пород, как например гранит или порфир, под влиянием физических и химических факторов разрушаются быстрее.

     Все дело только в том, чтобы эти факторы могли как можно интенсивнее воздействовать на обломки скал различной величины, доводя их до состояния, обеспечивающего питание растений. Обломки эти по величине делят на две категории:

1)     обломки крупные, возникающие под влиянием физических факторов и малопригодные к жизни на них растений (скелет почвы по Кноппу). Это есть запас, резерв, из которого растения могут извлекать питание только после более тщательного измельчения обломков;

2)     так называемая мелочь, то есть самые мелкие части почвы, составляющие непосредственный источник питания растений и являющиеся продуктом химических факторов выветривания.

Следовательно, плодородие почвы зависит:

А) от химического состава образующих горных пород;

Б) от степени измельчения этих горных пород.

     Породы химически бедные, такие как кварц, дают землю малоплодородную (песчаную), вследствие чего труд над большим измельчением частичек такой земли дает менее значительные результаты.

     Иначе обстоит дело, если почва образована из обломков химически богатых, но недостаточно измельченных горных пород, содержащих в себе калий, кальций, фосфор и т.д. В подобных случаях внесение удобрений в почву становится неоправданной расточительностью. Мы гораздо дешевле можем получить соответствующие питательные вещества для растений, ускоряя выветривание содержащихся в почве обломков, превращая более или менее крупные частицы скелета в мелочь, которая имеет большую суммарную поверхность для факторов выветривания и для корней растений.

     В большинстве случаев почва содержит в себе огромное количество питательных веществ для растений, количество, которое Дегерен называет «ужасным». Однако, несмотря на это «ужасное» количество содержащегося в почве питания, все-таки тратятся громадные суммы, которые тоже можно назвать «ужасными», на искусственные удобрения и создается специальная литература об удобрении почвы.

     Этот факт служит неопровержимым доказательством той истины, что при традиционной системе обработки почвы мы не в состоянии использовать тех огромных запасов питания для растений, которые содержатся в почве, потому что старая система обработки не только не способствует действию факторов, обеспечивающих растения питательными веществами, но даже затрудняет это действие.

     Если бы мы захотели на погибель земледелия создать систему, затрудняющую использование питательных веществ из почвы, то нам не нужно бы было особенно трудиться над этой задачей - достаточно было бы выполнить советы приверженцев глубокой вспашки, которые вопрос о малой эффективности питательных веществ в почве разрешили самым тщательным образом. Благодаря этому «ужасное», как говорит Дегерен, количество питания в почве не доступно для растений, вследствие чего и результаты получаются действительно «ужасные».

Итак:

1) затрачиваются громадные суммы на увеличение тяглового усилия при глубокой вспашке;
2) тратятся миллиарды на удобрения, количество которых при рациональной обработке можно значительно уменьшить или же совсем не применять;
3) теряются миллиарды вследствие неурожаев при засухе, которая разоряет хозяйство при глубокой вспашке.

      Знаменитый Круп своими снарядами для военного разрушения не принес столько вреда человечеству, сколько принес завод плугов для глубокой вспашки. Никакие военные контрибуции не сравняются с теми убытками, которые приносит земледелию глубокая вспашка. Достаточно вспомнить голод в России в 1891-92 гг., достаточно было проехать прошлой осенью (1897 г.) по югу России, чтобы глядя на черные от засухи поля понять всю ту беду, которую приносит земледелию ошибочная система обработки.

     Для более подробного освещения этого вопроса мы должны привести цифры, указывающие с одной стороны на количество питательных веществ, которое содержится в атмосфере и почве, а с другой стороны - на количество питания, необходимое для получения урожая. Цифры эти убедят читателя, что содержание питательных веществ в почве иногда в 100 и более раз превышает потребность растений. Если, несмотря на это, приверженцы глубокой вспашки и советуют вносить в почву покупные удобрения, то этим они только дискредитируют свою систему обработки.

Азот

     Начнем с самого дорогого из питательных элементов растений - азота. По Буссингольту с урожаем 5-польного плодосмена в Эльзасе выносится в среднем 25,5 фунтов азота на 1 прусский морг, то есть около 40 кг на га. Это количество азота растениям может дать атмосфера и почва.

     Азот атмосферы усваивается бобовыми растениями благодаря открытым Гельгригелем клубеньковым бактериям. Другие растения питаются азотистыми соединениями, которые переходят из атмосферы в почву. Количество аммиака и азотной кислоты в атмосфере и атмосферных осадках было определено Вилле, Бино, Госфордом и другими исследователями, причем полученные цифры значительно отличаются друг от друга. В среднем на 1 млн. частей воздуха, исследованного в различных местах и в разное время года, каждый из этих наблюдателей нашел частей аммиака:

Г. Вилле

22,41

Де Поре

3,5

Кемп (Ирландия)

3,88

Грегер (Мюльгаузен)

0,33

Трюениус (Висбаден)

0,13

Бино (Лион)

6,18

Горсфорд

47,6

     Что же касается азотной кислоты, то мы не имеем даже приблизительных цифр относительно ее количества.

     Исследование количества аммиака и азотной кислоты, содержащихся в атмосферных осадках, дало точно такие же результаты, как видно из прилагаемой таблицы.

     Среднее содержание в дождевой воде:

Исследователи

Азотной кислоты

Аммиака

Баррал (Париж)

6,21

3,72

Бобьер (Нант)

5,68

5,94

Буссингольт (Париж)

1,02

1,63

Бино (Лион)

1,00

6,8

Кнопп (Меккерн)

0,57

0,30

Кнопп (Меккерн)

9,80

4,00

      Зима не способствует обогащению атмосферы азотистыми соединениями, так как низкая температура препятствует разложению органических веществ и образованию аммиака. Зимой нет молний, следовательно и этим путем азотная кислота образоваться не может. Однако в снеге найдено:

Исследователи

Азотной кислоты

Аммиака

Буссингольт (Париж)

1,66

1,20

Кнопп и Вольф

0,00

0,29

      Несравненно большее количество аммиака и азотной кислоты найдено в росе, инее и тумане. Количество это доходит до 138 млн частей азотной кислоты и аммиака. Бывали случаи такого большого содержания аммиака в воде, конденсированной из тумана, что в ней синела красная лакмусовая бумага.

     Итак, значит туман и роса самые обильные источники атмосферного аммиака и азотной кислоты. Источник этот тем более интересен, что если количество дождей, приносящих в почву аммиак и азотную кислоту, от нас не зависит, то количество осаждающейся в почве росы всецело зависит от системы обработки, что ниже мы и обсудим.

    По Бино, количество аммиака и азотной кислоты, получаемых почвой из тумана, росы и инея сравнимо с тем количеством, которое поступает в почву с дождем и снегом.

     Однако оно может быть значительно большим, если искусной обработкой мы сможем осадить в почве значительное количество росы.

     На опытных станциях в Пруссии в среднем за три года найдено следующее количество соединений азота в дожде и снеге (в футах на 1 прусский морг): 

В Кушеве (Познань)

1,4

В Инстербурге

3,6

В Даме

3,8

В Регенвальде

7,1

В Зорау

6,7

В Проскау

11,9

Итого: в среднем на 1 прусский морг 5,75 фунтов азотных соединений. Так по Бино роса, иней, туман могут привнести в почву еще столько же азота, то общее поступление в почву этого элемента достигает около 12 фунтов на прусский морг.

      Из вышеприведенных расчетов Буссингольта мы видим, что ежегодный вынос азота составляет в среднем 25,5 фунтов с морга. Следовательно, атмосфера через осадки может дать почве половину нужного для растений азота.

     Точно такие же расчеты приводит Розенберг - Липинский в своем сочинении об обработке почвы. Эти расчеты могут более или менее приближаться к истине при глубокой вспашке.

     Иначе обстоит дело при новой системе земледелия. Потому что в последнем случае обильное осаждение росы в почве (атмосферная ирригация) всецело зависит от воли земледельца, а мы уже видели, что роса есть самый обильный источник азота.

    Кроме того, новая система земледелия способствует поглощению аммиака непосредственно из воздуха.

    Далее, вследствие увлажнения в самой почве образуется соединения азота в количестве до сих пор не известном, которые не принимать во внимание также нет повода.

    Нижеприведенная таблица (по Гофману) показывает способность к поглощению аммиака различными видами почв непосредственно из атмосферы: 

Песок поглощал аммиака

0,000%

Сухая глина поглощала аммиака

0,201%

Влажная глина (9,5% Н2О)

5,000%

Сухой перегной (9,5% Н2О)

11,900%

Влажный перегной (20,3% Н2О)

16,600%

    Следовательно, в наибольшей степени поглощает аммиак перегной и особенно перегной влажный. В этом отношении новая система обработки, оставляющая постоянно верхний перегной слой наверху и гарантирующая обилие влаги в почве, имеет решительное преимущество перед глубокой вспашкой, ибо выворачивание на поверхность глины и песка должно отрицательно влиять на поглощение аммиака почвой.

      Теперь посмотрим, насколько новая система обработки способствует усвоению азота из других источников. Как мы уже видели, из атмосферных осадков самое большое количество азотных соединений содержит в себе роса. Росу мы признаем самым главным источником соединения азота, как из относительно высокого содержания их в росе, так и потому, что надлежащее исследование этого источника (но не при глубокой вспашке) всецело зависит от нашей воли.

      Как известно, роса образуется из водяных паров, конденсирующихся вследствие соприкосновения с холодными предметами.

      Ночью роса обильно осаждается на тех предметах, которые способны быстрее охлаждаться. В этом отношении разные компоненты почвы различаются следующим образом (по Шиблеру).  

Песок удерживает тепло

100,00

Глина удерживает тепло

76,9

Гипс

73,8

Суглинистая почва

71,8

Известь углекислая

61,0

Перегной

49,0

      Следовательно, свойство перегноя быстрее охлаждаться за собой более обильное выпадение на пашне росы, содержащей в себе соединения азота.

      Однако для нас более важное значение имеет дневная роса, осаждающаяся внутри пашни, если туда проникает воздух. На это обратил внимание И. Бочинский в небольшом сочинении об обработке почвы в 1876 году, а также Розенберг-Липинский. Кроме того, в последнее время образование подземной росы стало предметом исследования в России, степные хозяйства которой хронически страдают от засухи. Однако подземная роса исследуется не как источник азота, а как источник чрезвычайно важной для растении воды.

      Количество подземной росы в слое мощностью в 1 аршин определено г. Ткаченко в 22 960 пудов или 30 600 ведер на 1 пруский морг.

       Так как роса содержит 138 млн. частей азотных соединений, то этот источник доставляет в почву около 60 кг/га азота, т.е. количество значительно превышающее потребность растений. Если это количество будет избыточным, то мы можем уменьшить его до 12-13 фунтов на прусский морг, чтобы только удовлетворить потребность растений из атмосферных осадков.

       Но кроме этого атмосферный азот попадает в почву другим путем, а именно, благодаря деятельности микроорганизмов, как это утверждает Бертолет и другие исследователи.

        Если бактерии Бертолета существуют, то наличие перегноя и влаги составляет самое главное условие их деятельности. По Бертолету, на площади 1 гектар слой земли мощностью 8 см содержит азота:

Супесь

6,7-47,5 кг

Каолин

7,2-39,5 кг

Пашня

580-1543,0 кг

     Когда Шлесинг на основании своих опытов опроверг существование открытых Бертолетом бактерий, то последний утверждал, что опыты противника не удались только потому, что в земле, которую он брал для опытов не хватало глины, которая должна составлять главное условие развития бактерий. Бертолет полагает, что 19% глины это еще мало для надлежащего из развития.

       Но исследования А. Готье и Р. Друина показали, что при меньшем содержании глины происходит поглощение азота, если только в почве есть перегной.

        По доктору Годлевскому, не подлежит сомнению, что некоторые суглинки, особенно из вида синеслойных, могут ассимилировать свободный азот. Это впервые отметил Франк, а потом со всеми подробностями доказали Шлесинг и Лаурент.

         По мнению Косовича содействует этому некоторые, сопутствующие суглинкам, бактерии, непохоже из тех, которые образуют клубеньки на корнях бобовых растений.

         Следовательно, зеленый налет появляющийся на пахотных суглинках, следует считать полезным, потому что он может обогащать почву азотом.

          Виноградский в последнее время обнаружил в почве некоторые бактерии, ассимилирующие свободный азот. Это анаэробы, которые могут развивать свою деятельность там, где кислород энергично поглощается аэробами.

           Наконец, Либшер высказал гипотезу, что микроорганизмы, развивающиеся при возделывании бобовых растений, в благоприятных условиях могут ассимилировать азот без возделывания каких бы то ни было растений.

            Правдоподобно, что азот, поступающий из этих источников, может при рациональной обработке с избытком перекрыть потребность растений. Но напрасное и бессмысленное оборачивание почвы при глубокой вспашке становится помехой для использования указанного источника азота. Таким же образом глубокая вспашка не дает возможности использовать и те  огромные запасы азота, которые содержит в себе почва.

              «Анализ показывает, - говорит Дегерен, - что 1 кг среднеплодородной земли содержит 1 г соединений азота. В более плодородных почвах содержание азота возрастает до 2 г. На кг почвы, еще больше содержание азота бывает на лугах. Если корни однолетних растений проникают в почву на глубину 35 см, то 1 га среднеплодородной земли на этой плодородной земли на этой глубине будет содержать 4000 кг азота и 8000 кг его будет в более плодородной почве. Если количество азота в хорошем урожае свеклы или пшеницы мы примем за 100-120 кг/га, то можно удивляться, почему для получения хорошего урожая, к громадному количеству содержащегося в почве азота, нужно еще добавлять 200-300 кг/га чилийской селитры».

                  «Если мы вынуждены покупать чилийскую селитру, пишет далее Дегерен, то единственно потому, что мы можем вызвать весною в наших почвах очень слабую нитрификацию; когда плуг разрезает землю на пласты и переворачивает их, то это действие должно быть признано совершенно недостаточным для того, чтобы вызвать нитрификацию».

                    Итак, несмотря на огромные запасы азота в атмосфере и почве, старая система обработки не дает возможности использовать эти исполинские источники. Теперь перейдем к рассмотрению содержания в почве других питательных веществ для растений.

Калий

      По доктору Меркеру хороший урожай выносит из почвы в среднем 60-90 кг/га калия. Содержание же калия в почве разные исследователи определяют в следующих количествах.

Флейшер:

 

Скалистая почва

300 кг/га

Вересковая

600 кг/га

Глинистая

4000 кг/га

Плодородная низменность

6000 кг/га

Гельгригель: Песчаная почва

546-798 кг/га

Риттгауз: Супесчаная почва

1290 кг/га

Петерс: пшеничная почва

1140 кг/га

Грувен: глинистая почва

320 кг/га

Гандке: глинистая почва

5440 кг/га

Фон Клауер почва из Баната

6600 кг/га

Фон Беммелен почва из Доллярта

30000 кг/га

Вельцкер почва из Голландии

15900 кг/га

Петгольц русский чернозем

18900 кг/га

    Эти количества калия определены в слое почвы мощностью 20 см. Следует принять во внимание, что растения распространяют свои корни гораздо глубже и потому имеют в своем распоряжении гораздо больше калия.

       Следует помнить также и то, что, как показали опыты Вольни, почвы ежегодно подвергаются размыванию, вследствие чего нижний пласт, даже при самой мелкой обработке, постоянно приближается к поверхности и представляет растениям новые запасы калия и других минеральных веществ.

        Ввиду этого даже самые ревностные сторонники удобрения калием, например, доктор Меркер, во многих случаях не советуют использовать эти удобрения, например, на глинистых почвах. На менее богатых калием почвах удобрение рекомендуется, но здесь неизвестно действуют ли калийные удобрения  своим содержанием калия, или же другими солями, находящимися в них и действующими растворяющее на содержащиеся в почве питательные вещества растений.

        Так доктор Меркер приводит следующие опыты. Эдлер одну делянку удобряя каинитом, а другую – солями, сопутствующими каиниты с отделением их от последнего. Было получено:

Картофеля:

 

Без удобрения

123,5 ц/га

На каините

179,7 ц/га

На солях без калия

136,8 ц/га

Ржи:

 

Без удобрений

18,9 ц/га

На каините

20,2 ц/га

На солях без калия

19,3 ц/га

      Вельцкер ставил опыты со свеклой, которые удобрял калийной солью, и получил лучшие результаты на соли, чем на калийном удобрении. Такие же результаты получились у Левеса и Гильберта.

      «Из вышеупомянутых данных, говорит доктор Меркер, ясно видно действие солей, лишенных калия, и настолько значительнее, что появляется сомнение следует ли его приписать калию, или же поваренной соли».

        Опыты эти непроизвольно наводит на мысль, что если бы обработка могла бы положительно влиять на растворимость находящегося в почве калия, то в большинстве случаев удобрение калием сделалось бы ненужным. Но, так как старая система обработки, как в этом, так и в других отношениях, совершенно бессильна, то одни только немцы в 1891 году использовали каинита около 5 000 000 ц.

           Что почва может обеспечить калием растения с избытком (за небольшим исключением), вытекает не только из вышеприведенных цифр. Большее подтверждение этому получено в опытах Дегерена, который, пропитав землю сильными кислотами, получил несравненно большее количество калия, чем приведенное, и которое он назвал «ужасным».

           Еще большие результаты получили Бертолет и некоторые другие немецкие агрономы. Поэтому то Дегерен скептически относится к удобрению калием, соглашаясь на него только в исключительных случаях, например, на бедных калием торфяных или карбонатных почвах.

Фосфор

     Необходимое для получения хорошего урожая среднее «количество фосфорной кислоты, говорит доктор Меркер, держится в скромных границах, а именно около 30 кг/га».

      Посмотрим теперь, какое количество фосфорной кислоты содержит почва. Разные исследователи приводят следующие данные:

Гельригель почва песчаная

870 кг/га

Грувент почва бедная кальцием

1350 кг/га

Дитрих почва глинистая

2940 кг/га

Петерс почва скалистая

1470 кг/га

Гандке почва суглинистая

6900 кг/га

Вельцкер почва скалистая

8100 кг/га

Петцольд русский чернозем

5400 кг/га

   Содержание рассчитано в слое мощностью в 20 см. но так как корни проникают гораздо глубже, а поверхность земли ежегодно понижается, то растения имеют в своем распоряжении гораздо большее количество фосфорной кислоты, чем было указано выше.

       Глубокая вспашка является препятствием для использования этих источников фосфорной кислоты, вследствие чего внесение фосфорных удобрений практикуется не только там, где абсолютный недостаток фосфора оправдывает это, но и на богатых фосфором почвах, где при рациональной обработке можно обойтись и без покупных фосфатов. Потому производство искусственных фосфорных удобрений и исчисляется миллионами тонн. Так, в 1893 году во Франции добыто 900 000 т фосфоритов, в Соединенных Штатах – 983 000 т и т.д. Суперфосфата ежегодно производится более 4 млн. т.

Кальций

     Хороший урожай выносит следующие количества кальция (по Ульману):

Злаки 19,3

26,9 кг/га

Бобовые 69,2

78,8 кг/га

Картофель, свекла 33,3

61,3 кг/га

Капуста 244

276 кг/га

Сено 96,6

195,3 кг/га

       Пахотный же слой, мощностью 20 см, содержит в себе кальция, по мнению различных исследователей, в таких количествах:

Гельригель почва песчаная

1821 кг/га

Грувен почва суглинистая

9120 кг/га

Почва глинистая

54450 кг/га

Фрейтач и Вальнер

 

Почва базальтовая

75360 кг/га

Гандке почва из Баната

166800 кг/га

Фон Беммелен

 

Почва из Доллерта

105000 кг/га

 Петцольд русский чернозем

26400 кг/га

 Ввиду таких количеств казалось бы ненужным внесением кальция, а между прочим известкованием почв имеет своих горячих пропагандистов. Правда, аргументы их часто звучат весьма странно. Так, доктор Ульман пишет: «Если профессор Вагнер советует нам удобрение фосфорной кислотой, хотя почва и содержит  5000 кг/га этой кислоты, но не может дать 50 кг нужных для получения среднего урожая, то я со своей стороны советую известковать почву достаточно обеспеченную запасом кальция». Это напоминает аргументацию Петрушки, который полагает, что он имеет право рвать штанишки, потому что маменька за такую шалость Стаса не наказала.

        Наконец, приверженцы известкования обращают на косвенное действие кальция на почву, который, изменяя структуру почв, улучшает их аэрацию.

         Действительно, при старой системе обработки, ухудшающей почву, такое дорогое лекарство может быть нужным. Но, при рациональной системе обработки, аэрация почвы гарантируется и  без этих аптекарских средств, вследствие чего потребность в известковании ограничивается только теми редкими случаями, когда почва абсолютно бедна кальцием.

       К этому вопросу мы вернемся еще впоследствии.

       Теперь мы закончим обзор содержания в почве главнейших элементов питания растений. О других питательных веществах мы не говорим, потому что самые горячие сторонники покупных удобрений считают, что остальные элементы находятся в почве с избытком. Очевидно они думают, полагал Либих, что природа не знала, как распределить питательные вещества в почве, дала изобилие одних и забыла о других, или же дала их в малоусвояемой форме, вследствие чего посредничество профессоров и фабрикантов и искусственных удобрений стало необходимым.

         Они забывают, что в девственных степях и лесах, где человек не испортил почвы глубокой вспашкой, природа и без чилийской селитры и суперфосфата производит такую обильную растительность,  какой ни один поклонник глубокой вспашки создать не в состоянии, хотя бы он искусственное удобрение использовал целыми возами.

          Тот вред, который наносит почве глубокая вспашка, никакие искусственные средства не в состоянии нейтрализовать, хотя бы они были составлены по рецептам самых опытных химиков.

            Но, если бы даже искусственные удобрения доставались земледельцам даром и могли отвечать в полной мере потребности растений, то, и в этом случае, приверженцы глубокой вспашки оказываются бессильны в борьбе с засухой, или же, наоборот, с избыточным увлажнением.

             Глубокая вспашка лишает возможности регулировать влагу в почве. Поэтому ее сторонники, то смотрят со сложенными руками, как растения  в глубоко вспаханной почве страдают от ее избытка, то, во время засухи, стараются вызвать дождь удивительными средствами, например, взрывами в облаках, как это пробовали делать в Америке.

              Они не знают, что влага из воздуха может конденсироваться и осаждаться в почве, как конденсируется высоко в облаках, и вопрос об обогащении почвы влагой может быть решен и без американской канонады в облаках.

           Ежедневное потение оконных стекол, потение летом графина с холодной водой, потение стаканов – все это явления, на которые мы каждый день смотрим, не умея найти тех факторов, которые их вызывают.

           «Чтобы получить хорошие результаты  от обработки и удобрения, гворит Дегерен, следует принять во внимание еще одно – последнее условие. Допустим, что почва хорошо обработана (глубоко – прим. Автора), что она растерта в порошок, что, наконец, воздух окружает каждую ее частичку. Можем ли мы в в этом случае быть уверены, что процессы образования питательных веществ будут совершаться энергично? К сожалению, нет! Необходимо, кроме этого, чтобы почва была еще влажна. Если почва хорошо приготовлена, то выпадающий вовремя дождь вызывает образование азотистых соединений, и мы получаем хороший урожай. Если же дождя нет, то наш труд пропадает напрасно, потому, что деятельность микроорганизмов прекращается».

             Приверженцы глубокой вспашки связали себе руки и бессильно смотрят  в небо, ожидая дождя, тогда как, при новой системе обработки, почва всегда имеет достаточное количество влаги, поэтому поля, засеянные по новой системе осенью 1895, 96 и 97 годов, которые на юге отличались страшной засухой, являли собой зеленый оазис, привлекающий внимание всех, среди чернеющих соседних полей, в которых вся влага была уничтожена глубокой вспашкой.

        Надлежащее обеспечение питательного режима и регулирование влаги в почве может гарантировать исключительно только новая система земледелия, что более подробно мы постараемся доказать в дальнейшем изложении.

 Глава 4. Условия усвоения растениями питательных веществ, находящихся в почве и атмосфере. Аэрация почвы 

        В предыдущей главе мы установили. Что питательные вещества содержатся в почве и атмосфере в количестве превышающем потребность растений. Если бы эти вещества находились бы в легко усвояемом растениями виде, то получение обильных урожаев было бы легкой задачей. Достаточно было бы бросить в землю зерно, чтобы получить желаемый урожай.

         Но, так как питательные вещества находятся в почве в большей части в неусвояемой форме, земледельцы стараются сделать их доступными, увеличивая растворимость их обработкой. Главным образом, более или менее глубокой вспашкой. Когда же такая вспашка не в силах выполнить своего назначения, тогда используются хорошо растворимые питательные вещества в виде искусственных удобрений.

        Условия, при которых питательные вещества, находящиеся в почве и атмосфере, становятся доступными для растений, следующие:

1.     Почва должна быть постоянно  в меру влажна. При недостатке воды, или при ее избытке, возделываемые растения не могут расти. В сухой почве биологические процессы тоже становятся невозможными. При излишке же влаги происходящие процессы принимают вредное для растений направление.

2.     Влага, хотя бы и распределенная надлежащим образом, будет ни к чему, если одновременно в почве не будет достаточно воздуха. Без кислорода биологические процессы разложения (нитрификации) происходить не могут. Перегнойные кислоты при недостатке воздуха перестают разлагать фосфориты, тогда как в присутствии кислорода они действуют сильнее, чем угольная кислота. Растения тоже не могут развиваться, потому что корни их также нуждаются в кислороде для дыхания. Наконец, от того, насколько воздух проникает в почву, зависит содержание влаги в ней. Только при надлежащей рыхлости почвы может осаждаться в ней дневная подземная роса (атмосферная ирригация), которая одновременно снабжает почву влагой и питательными элементами из атмосферы. Следовательно, среди других условий плодородия почвы, мы на первом месте ставим ее рыхлость.

3.     Температура почвы должна быть не слишком низка, потому что тогда прекращаются процессы разложения, и не слишком высока, потому что высокая температура почвы в одинаковой степени не благоприятна, как для биологических процессов, происходящих в ней и обусловливающих ее плодородие, так и для атмосферной ирригации.

4.     Угольная кислота в почве способствует  растворимости ее минеральных веществ, но задерживает биологические процессы разложения. Поэтому при обработке расположение плодородного слоя должно быть таким, чтобы одновременно могли происходить и нитрификация, которую угольная кислота делает невозможной, и разложение минеральных веществ почвы, для чего угольная кислота необходима.

    Только при выполнении всех указанных условий почва обеспечивает растения питательными веществами. Глубокая же вспашка делает невозможным одновременное соблюдение всех этих, на первый взгляд противоречивых, условий. Поэтому мы постоянно слышим жалобы на засуху и на истощение почвы; часто без надобности тратим деньги на покупку искусственных удобрений; напрасно ожидаем дождя или ропщем на его излишек.

      Указывая на условия плодородия почвы, мы на первый план поставили ее рыхлость. Мы утверждали, что атмосфера должна иметь постоянный гарантированный доступ в почву, как непосредственная поставщица питания для растений и как фактор, при посредстве которого увеличивается подвижность питательных веществ почвы.

        Чем из более крупных осколков горных пород сложена почва, тем она лучше аэрируется. С увеличением малых фракций в почве ее аэрация уменьшается. Мелкие фракции обладают настолько сильным свойством слипаться, что, например, при механическом анализе почвы, более чем десятичасовое кипячение едва только в состоянии диспергировать слипшуюся мелочь.

        Однако корни растений, пронизывая почву в различных направлениях и разлагаясь, образуют естественные дрены, посредством которых воздух проникает в почву. Поэтому она становится рыхлой, не утрачивая своей капиллярности, что с точки зрения регулирования степени влажности почвы всегда важно.

           «Не подлежит сомнению, пишет Доктор Карпинский, что оставшиеся после уборки корни в земле, высыхая и перегнивая, образуют целую сеть канальцев, по которым воздух может свободно циркулировать в почве и оказывать положительное влияние на ускорение ее деятельности».

             «Следует вспомнить, пишет доктор Вагнер, о важном влиянии сидеральных растений, в особенности о глубоко укореняющихся, на что обратил внимание земледельцев доктор Шульц. Именно он заметил, что эти растения, в особенности люпин, пуская глубоко корни не только сами извлекают пользу из подпочвенных запасов влаги и минерального питания, но они делают возможным тоже самое и для следующих за ними растений с короткими корнями, как картофель и др.

                 Действительно, глубоко проникшие корни люпина, после его запашки, постепенно разлагаются, образуя каналы, по которым проникают вглубь почвы корни следующих за ними растений с короткими корнями. Последствием бывает та легкость, с которой переносят засуху укоренившиеся таким образом растения. Так, например, в 1893 году картофель, посаженый на поле после запаханного люпина, возделываемого как удобрение, укоренился так глубоко, как достигали корни люпина, вследствие чего не будучи подвержен пагубному действию засухи, случившейся в этом году, он почти не пострадал, тогда как рядом лежащие поля картофеля, произрастающего без удобрения люпином, было сильно повреждено ею, картофель мелко укоренился и урожай был ничтожным».

               «Глубоко укореняющиеся бобовые растения, предназначенные на зеленое удобрение, оказывают замечательное влияние на следующие за ними и плоско сидящие растения».

              Приведенное мнение Вагнера следует дополнить, так как каждое поколение растений все равно бобовых или колосовых, которые также могут глубоко пускать корни, как это мы увидим дальше, оставляет целую сеть канальцев, которые облегчаю распространение корням нового поколения растений.

          Не следует только разрушать эту ценную сеть корней более или менее глубокой вспашкой, как это мы во вред себе делаем, одновременно уничтожая и сеть корневых канальцев и те многочисленные канальцы, которые в рационально обрабатываемых почвах образуют дождевые черви указал в своем сочинении Дарвин.

              Следовательно, при обработке почвы мы должны стремиться к тому, чтобы:

1.     атмосфера не была отрезана от сети находящихся в почве канальцев, образующейся на поверхности коркой;

2.     чтобы созданные разлагающимися корнями и дождевыми червями естественные каналы и дрены не были бы уничтожены более или менее глубокой вспашкой или любой другой обработкой (культиваторы, груббером и др.)

      Глубокая вспашка разрушает созданные разлагающимися корнями и дождевыми червями каналы и растирает почву в порошок, из которого после первого хорошего дождя образуется тесто, затем засыхающее и растрескивающееся как кирпич. При таких условиях ни процессы минерализации не могут нормально протекать, ни растения расти надлежащим образом.

       Что высыхание и образование трещин в почве достигает той глубины, на какую вспахано поле, это доказал Костычев. С другой стороны вывернутая наверх почва более склонна к образованию корки, что окончательно закрывает доступ воздуха в почву и подвергает земледельца известным расходам.

       Расходы эти, однако, вполне заслуженное наказание, за преступления в обработке, которые служат непосредственной причиной образования корки и уплотнения почвы.

      Земля, предоставленная сама себе в степях, лугах, лесах, не покрывается коркой. Защищает ее от этого органические остатки, содержание которых в почве увеличивается от нижних слоев к верхним (за немногим исключением). Потому, что корни растений кверху толще, а на поверхности остаются надземные части растений; что, вместе взятое, образует верхний перегнойный слой, гарантирующий постоянное проникновение воздуха в почву, проницаемую на значительную глубину, благодаря многочисленным разлагающимся корням и каналам, созданным деятельностью дождевых червей.

       При мелкой двухдюймовой вспашке верхний слой, богатый органическими веществами и действующей наподобие лесной подстилки, не образует корки. Воздух, же циркулирующий по каналам созданным разлагающимися корнями растений, вызывает быстрое рыхление на значительную глубину мелко вспаханной почвы и, вследствие этого, отлично приспособленной к произрастанию не только злаков и бобовых, но даже корнеплодов, под которые мы всего привыкли пахать глубоко.

        Корням корнеплодов легко пробивать сеть корневых канальцев, вследствие чего получаются прекрасные экземпляры, длинные толстые, без бобовых отростков, что больше всего удивляло посещающих наше хозяйство.

        В 1895 году гости уничтожили у меня небольшую плантацию свеклы, потому что каждый из них хотел видеть, как эта свекла может расти на 2-дюймовой пахоте и каждый считал необходимым вырвать более десятка корнеплодов.

          Господин Мацыев, который образцы моих растений в июле 1897 года посылал в министерство земледелия, говорил мне, что там больше всего внимания было обращено на кормовую морковь, которая на 2-дюймовой пахоте выросла длинная, ровная и без боковых отростков.

          Я обращаю внимание, что такие результаты на 2-дюймовой пахоте получаются потому, что уже 4-5 – дюймовая пахота уничтожает сеть канальцев и этим затрудняет распространение корней.

            Что мелкая 2-дюймовая вспашка вызывает быстрое улучшение почвы на значительную глубину, заметили Блэк, Швезер, Коне, Розенберг- Липинский и др.

         Из наших земледельцев интересные наблюдения над разрыхлением мелко вспаханной почвы сделал С. Лиховский, доклад которого по этому вопросу, прочитанный на II Киевском съезде, был напечатан в 1895 году в земледельческой газете.

           Действительно, для почвы, пронизанной многочисленными корнями, не только глубокая вспашка, культиватор, груббер, разрушающие созданные корнями и дождевыми червями канальцы, но даже почвоуглубитель может быть вредным.

           Это последнее орудие может помочь почве с твердой, непроницаемой и непронизанной корнями подпочвой. Но и в этом случае, почвоуглубитель станет не только лишним, но и вредным с того момента, как только разрыхленная  им подпочва прорастет сетью корней.

            О роли почвоуглубителя для уничтожения многолетних сорных растений с длинными корнями, как осот или вьюнок полевой, мы поговорим в соответствующем месте.

             Кроме всего, когда школа Либиха окончательно выяснила, что растения питаются веществами неорганической природы и когда теория перегноя пала, а химические анализы показали, что почва содержит больше минеральных веществ, чем верхний слой, то тогда и появилось стремление выворачивать подпочву  наверх в надежде увеличить плодородие. Глубокая вспашка стала идеалом обработки, основанном, как казалось, на научных данных.    

          Но богатая минеральными запасами подпочва принимает участие в питании растений и там, где земледелец не выворачивает ее на поверхность глубокой вспашкой. Корни растений часто эксплуатируют почву на громадной глубине, вынося элементы питания на  поверхность. Кроме этого, благодаря капиллярности грунта, их подпочвы к верхним слоям поднимаются элементы питания вместе с водой.

           Однако приверженцы глубокой вспашки не удовлетворились такой ролью подпочвы и питали надежду внезапным переворотом вырвать все, содержащейся в ней, элементы питания. Но глубоко вспаханная земля родить не хотела и многие из сторонников глубокой вспашки оказались в положении человека, который, убивши курицу, несущую ему золотые яйца, думая сразу разбогатеть.

            Нет сомнения, что так называемая «глубокая вспашка», практикуемая у нас в имениях, обходится нам дорого, а выглядит довольно жалко, в сравнении с той глубиной, до которой доходят корни растений, даже перечисляемых к числу мелкоукореняющихся.

          «В бернском музее, пишет г. З. Говрецкий, хранят, как феноменальную редкость, корень люцерны в 16 метров длиной. Гаспарин видел корень люцерны в 16 метров длиной. Елиш в черноземных степях России находил корни длиной в 10 футов».

            «Хлебные злаки, продолжает г. Говорецкий, как вообще все травянистые растения, считаются растениями, корни которых не уходят глубоко. Между прочим, я уже два раза в жизни имел случайную возможность лично убедиться в несправедливости и такого взгляда. Я два раза видел рожь, посеянную на горе, которая с одной стороны обвалилась. Когда частички земли, оставшиеся на отвесной стене высохли и осыпались, то можно было видеть что-то наподобие висящего занавеса, образовавшегося из тонких, как волосы, корешков ржи. Длина этого занавеса достигала в первый раз около сажени, а во второй – около 2 аршин. Причем, так как гора обвалилась только на эту глубину, то очень может быть, что еще более длинные корешки остались в земле».

              Известный в свое время чешский земледелец Торский показал посещающим его хозяйство, после одной из Венских выставок, экземпляры ржи с корнями длиной в 70 см.

              Ввиду такой длины корней практикуемая у нас так называемая «глубокая вспашка» на 10-15 дюймов, может принести только вред, а не пользу, что мы ниже посмотрим более подробно.

        Действительно, глубокое оборачивание земли паровым плугом часто портило ее окончательно. Так было более десяти лет назад в Подольской губернии в имении Браилово (тогда собственность барона Мекка) и многих других.

           «В имении Валево, пишет г. Лигоцкий, на площади в 3 десятины я сам три раза перекал свеклу и весьма плохим результатом. На этом месте, как на косогоре, слой чернозема был, тонкий, а паровой плуг, вследствие завышенной глубины пахоты, вывернул наверх из подпочвы неразложившуюся землю. Еще более чувствительный убыток, на площади 20 десятин, понесли, по той же причине, в имении Завадовка. Здесь, несмотря на пересев несколько раз, свеклы совсем не было, так как слой чернозема в указанном имении значительно тоньше. На лучших же почвах если результат такой глубокой пахоты (40см) не был таким плачевным, в отношении урожая свеклы, то только исключительно благодаря мощности украинского чернозема».

              В исключительных случаях глубокая вспашка может быть использована единовременно, как средство улучшения почвы. Например, если нужно перемешать верхний песчаный слой с нижним глинистым (или наоборот). Но никогда глубокая вспашка не должна применяться как постоянная система обработки.

               Отрицательные результаты глубокой пахоты, казалось бы, должны были способствовать отказу от нее. Но такой шаг для ее приверженцев оказался слишком простым. Как метафизик, который, упавши в яму, не хотел вылезать из нее с помощью веревки, ввиду того, что способ слишком простой, так и сторонники глубокой пахоты начали подыскивать более хитрые способы, как вывернуться из беды.

             Советовали: постепенную припашку нижних слоев, проведение вспашки поздней осенью, использование больших доз удобрений одновременно с припашкой почвы. Когда же приваленные  подпочвой органические остатки разлагались медленно, а почва то разжижалась после дождевой, то покрывалась коркой и засыхала, как кирпич, во время засухи, то кроме всего еще оказалось необходимым использование громадного количества извести.

             Можно ужаснуться тем рецептам глубокой вспашки, которые предписывают ее приверженцы, как, например, Лекуто в своем сочинении об «улучшающей» обработке почвы.

              При применении т.н. вспомогательных средств, вывороченная наверх подпочва должна давать хорошие результаты. Но, если бы сторонники такой системы обработки засыпали бы землей и удобрениями голую скалу, то на  ней выросли бы растения, но никто не имел бы право утверждать, что скала плодородна.

                 Обильное удобрение может уменьшить отрицательные последствия глубокой пахоты, но для большинства наших хозяйств такая система предварительной порчи и последующего исправления почвы недоступна, даже если бы она и окупались.

                    Стремление к глубокой пахоте не ослабло и тогда, когда место потерявшей доверие минеральной теории питания, заняла теория минерально - органическая, самым видным представителем которой является Грандо. Ему мы обязаны выяснением условий плодородия почвы. Оно зависит не от абсолютного содержания в почве минеральных веществ, а от соотношения их с почвенным перегноем, с его миллиардами живых организмов, которые, однако, по - прежнему  зарывается глубокой вспашкой.

     Гейден, выщелачивая пахотную землю, богатую органическими веществами, и подпочву нашел следующее количество растворимых в воде (следовательно доступных для растений) соединений фосфора, самых главных после азота питательных веществ.          

Плодородная земля:

 

Проба 1

0,0057%

Проба 2

0,0053%

Подпочва:

 

Проба 1

0,0026%

Проба 2

0,0019%

           В этом опыте следует обратить внимание на то, что в подпочве фосфорной кислоты было бы меньше, чем в верхнем слое, что делает значение перегноя еще более заметным.

          Еще лучше осветили этот вопрос исследования Грандо, который выполнил целую серию больших опытов и точно установил в каком количестве различные виды земли содержит фосфориты, а также в какой зависимости находится их растворимость от перегноя почва. Анализ четырех видов почвы (чернозема, известковой, торфяной и песчаной) показал, что плодородие почвы зависит от соотношения между перегноем и фосфоритами, а не от абсолютного содержания фосфоритов в почве. Так, например, земля из Габленвиля содержит в себе почти в 7 раз больше соединений фосфора, чем Уладовский чернозем. Несмотря на это, чернозем родит без удобрений, а Габленвильскую землю нужно удобрять.

           Предпринимаемые испытания всегда подтверждали выше приведенное положение. Перегной занял, как и во времена Тера, главное место в пахотном слое из-за его опосредованного и непосредственного значения в питании растений после его разложения, а его Дегерену, даже и до окончания этого процесса.

             Приверженцы глубокой вспашки не могли не знать важного значения перегноя, но вместо того, чтобы оставлять его постоянно наверху, они старались перемещать его с пахотным слоем. Доказательства необходимости такого смешивания, как овса с сечкой для корма лошадей, одинаково можно услышать как из уст практиков, так и встретить в сочинениях по земледелию.

          Однако совершенно правильно говорит Грандо, которому мы обязаны указанием роли перегноя, что «простая смесь извести, глины, песка и перегноя, в пропорции, соответствующей содержанию их в пахотной почве, вовсе не будет почвой. Плодородная земля составляет одно целое, значительно отличающееся своим составом и свойствами от более или менее тщательной смеси составных ее частей». Потому что никакое смешивание не в состоянии создать, или заменить, те естественные дрены и каналы, которые образуют корни и дождевые черви, не уничтожая при этом капиллярности почвы, что имеет важное значение для распределения влаги в почве.

         Действительно, результаты смешивания почвы с перегноем бывают часто такие, что пожнивные остатки, крупные корни растений и куски навоза, целыми годами в почве, не разлагаясь, и часто извлекаются на поверхность последующей вспашкой.

            Причина этого явления – недостаточная аэрация почвы, вызываемая чаще всего образующейся на поверхности почвы коркой. При обработке парового поля корку можно уничтожить бороной или другими орудиями, но после посева уничтожение корки становится возможным только при одновременном повреждении возделываемых растений (исключение – корнеплоды).

            Новая система земледелия потому имеет громадное значение для растений, что:

1) не уничтожает каналов, образуемых корнями и дождевыми червями

2) прикрывает почву слоем рыхлой перегной земли, которая защищает ее от образования корки, действуя подобно лесной подстилке

3) не лишает почвы капиллярности

4) дает возможность ухаживать за посеянными хлебами посредством конного полольника до тех пор, пока они сами затенять почву.

     Известно, что затенение почвы влияет на нее так же благотворно, как и рыхление полольника или мотыгой.

             При глубокой же вспашке и посеве по обычной системе корка образуется чрезвычайно легко и бывает настолько непроницаемой, что воздух совершенно не проникает в почву. Наряду с этим уничтожаются каналы, созданные корнями и дождевыми червями, вследствие чего после первого дождя из глубоко вспаханной почвы образуется тесто, засыхающее впоследствии как кирпич. В почве не хватает кислорода для разлагающих органические остатки бактерий, вследствие чего куски  навоза и пожнивные остатки лежат годами без изменения.

              Более того, препятствуя доступу воздуха в почву, механически вывернутая наверх подпочва часто содержит в себе водный раствор окиси железа, которая соединяется с кислородом и переходит в окисляющие элементы. Вследствие вывернутая подпочва отнимает кислород у почвы и химическим способом.

          Недостаток воздуха (кислорода) делает невозможным нитрификацию, вызываемую бактериями, которых открыли в 1877-78 гг. Шлесинг и Мюнтц. Эти бактерии способствуют превращению аммиака в азотнокислые соединения, а затем в азотную кислоту.

           Вследствие прекращения деятельности этих бактерий, требующих для жизнедеятельности кислорода (аэробы), начинают свою деятельность другие бактерии, обходящиеся без кислорода воздуха (анаэробы) и превращающие азотнокислые соединения в аммиак и в газообразный азот, т.е. они обедняют почву азотом. Вредную деятельность анаэробов в почве констатировал в 1882 году Дегерен, а также Гайен, Дюнет, Макен.

        Нитрификация может происходить только в надлежащей влажной почве и в присутствии воздуха. В глубоко вспаханной почве во время засухи нитрификация невозможна из-за недостатка воды. Когда же глубоко вспаханная почва впитывает в себя, как губка, после сильного дождя воду, то последняя уничтожит и займет все каналы, по которым воздух мог бы проникнуть в почву. В результате излишка влаги и недостатка воздуха начинаются анаэробные процессы, приводящие к потер азотнокислых соединений теряется для целей земледелия. Опыты Штреккера, Эдлера и Керна показали, что земля, рыхлившаяся в горшках (аэробные условия) теряла 48% азота, не рыхлившаяся (анаэробные условия) – 64%.

          При новой системе обработки почва никогда не может пересохнуть так, как при глубокой    вспашке. В самую острую, продолжающуюся несколько месяцев, засуху, она имеет запас влаги, достаточный для развития корней, всходов и для деятельности бактерий. С другой стороны, самые обильные дожди не могут перенасытить почву влагой и задержать поступление воздуха в почву.

           Кроме того, при глубокой вспашке не только прерывается процесс разложения перегноя, но и уже образовавшиеся перегнойные кислоты при недостатке воздуха перестают действовать на минеральную часть почвы, а именно: не растворяют фосфиты, несмотря на то, что при достатке кислорода действуют на них в 10 раз сильнее, чем угольная кислота.

            При недостатке воздуха (реже при недостатке еще одного необходимого фактора нитрификации – кальция) перегнойные кислоты считаются вредными для  растительности, и сторонники глубоко пахоты ведут с ними упорную борьбу такими энергичными средствами, как известкование или даже выжигание. Известь, уничтожая кислоты, одновременно способствует растворению калийных соединений, но на растворимость фосфитов положительно не влияет.

          Для правильного разложения перегноя чаще бывает нужен доступ воздуха в почву, чем известкование. В достаточно рыхлой почве нитрификация проходит энергично и без добавления извести. Даже в самом худшем случае, при действительном недостатке кальция в почве, необходимое количество вносимой извести на одну десятину, как это рекомендуют сторонники глубокой пахоты, преувеличивая значение известкования.

          «Во всех почти руководствах по сельскому хозяйству, пишет Грандо, мы встречаем утверждение, что развитие растений из семейства бобовых, зависит от содержания кальция в почве. На почвах очень бедных кальцием и кислых, вообще советуют удобрение мергелем или известью, как первую работу при создании лугов хорошего качества (богатых бобовыми растениями). Вместе с тем, г. Мондесир доказал возможность получения хороших урожаев кормовых растений на почвах, почти совершенно лишенных кальция, при условии внесения в достаточном количестве нужной для этих растений  фосфорной кислоты.

      Луг  фермы Болье совершенно заболочен и до такой степени кислый, что на холоде разлагает около 3 г углерода извести на один килограмм земли. На первый взгляд этот луг кажется покрытый растениями, но растения эти развиваются плохо. В самой худшей его части , не дающей ни сена, ни выпаса, г. Мондесир выбрал три участка по 10 акров каждый. В конце осени первая делянка получила 100 кг фосфата, вторая такое же количество фосфата и 20 кг хлористого калия, третья – 700-800 кг извести. С наступлением весны, к глубокому изумлению владельца, первые две опытные делянки покрылись ковром желтого клевера 30-40 см высотой и такого густого, что большая часть его полегла. Делянка же, удобренная известью, не показала никакого улучшения. Такие результаты получаются постоянно уже четыре года.

        Г. де Мондесир совершенно не сомневался в благотворном влиянии известкования на кормовые растения. Но интересные его опыты доказывают, что эти растения довольствуются кальцием, соединенным с перегнойной кислотой, если в почве достаточно для их развития фосфатов и калия. Кальция органических соединений хватает для кормовых растений даже тогда, когда его нет в почве в достаточном для насыщения этих веществ количестве. Это последнее утверждение, заканчивает Грандо, является самым интересным и вместе с тем менее всего ожидаемым».

            Мелкая, двухдюймовая пахота, обеспечивая аэрацию почвы, делает чаще всего излишним употребление этого арсенала дорогостоящих средств, без которых не могут обойтись (следуя логике заблуждений) приверженцы глубокой вспашки, при которой внесение извести влияет косвенным образом, увеличивая уничтоженную глубокой пахотой способность почвы к аэрации.

           «Известкование тяжелых почв, говорит Дегерен, не редко дает превосходные результаты. Иначе, однако, действует известь на легких почвах. В Тригноне я обрабатываю почву, которая больше страдает от засухи, чем от дождей. Самые лучшие урожаи получаются на ней в дождливые годы. Во всей окрестности никто не применяет известь. Однако, несколько лет назад я пробовал удобрить известью некоторые делянки опытного поля. Полученные результаты были самые плачевные – урожаи уменьшились в течение нескольких лет.

      Каким образом можно объяснить несколько разные результаты на тяжелых и легких почвах? Почему на тяжелой почве Блярингема действие извести дает хорошие результаты, а на легких почвах Тригнона плохие? Правда, в последнем случае почва обеспечена кальцием лучше, чем в первом, но только разница  в содержании кальция не может объяснить этих противоположных результатов.

        Действие извести на почву еще не выяснено надлежащим образом, однако на основании точного опыта Шлесинга можно сформулировать гипотезу. Когда бросают в воду не содержащую кальций, глинистую землю и, взболтав, оставляют в покое мутную жидкость, она не очищается. Правда, песок садится на дно, но глина остается в смеси с водой в течение нескольких дней. Однако, мутную воду не трудно очистить за короткое время – достаточно добавить к ней извести или морской соли. Тогда глина коагулирует. Образуя хлопья, которые в скором времени оседают на дно, образуя слой глины, а вода становится прозрачной. Это опыт чрезвычайно занимателен, так как он не только дает возможность понять, почему известковые воды прозрачные, а не содержащие кальций мутные, а также, почему прозрачны воды океана, но в равной степени этот опыт объясняет образование дельт в устьях больших рек. Мутная вода рек, смешиваясь с морской водой, осаждает глину и образует наслоения ила, через которые река с трудом пробивает себе дорогу и вследствие этого образуется дельта. Таким образом, Нил, Гонг, Красная река (в Тонкине), Ориноко, Рона, Рейн и другие реки впадают в море дельтами.

      Разве опыт Шлесинга не может объяснить пользы известкования тяжелой почвы и вреда, какой она приносит легким почвам? Этот вопрос следует нам рассмотреть.

       Тяжелая, богатая глиной почва малопроницаема для воды и воздуха. Вследствие недостатков дренов такую почву следует обрабатывать грядами, чтобы облегчить сток воды. Излишек влаги пагубен для глинистой почвы, которая в этом случае представляет как бы губку, пропитанную водой. Известь же образует в глине отдельные хлопья, она как бы становится более проницаемой, более рыхлой, меньше сжимается, т.е. известкование тяжелой почвы бывает полезным.

          В легких же почвах преобладает песок. При выпадении далее обильного дождя на такую почву, вода быстро впитывается (проваливается) и уже часа через два бывает доступна для воздуха. Когда же известь соберет в хлопья то небольшое количество глины, то которое содержат такие почвы, то она еще меньше будет удерживать оду, что увеличит недостатки легкой почвы. Вот почему результаты известкования таких почв получаются плачевные.

          Итак, известкование применяется главным образом с целью увеличить рыхлость почвы. Но так как при новой системе обработки рыхлость гарантирована, то потребность в известковании в большинстве случаев совершенно исключается, ограничиваясь только теми редкими случаями, когда в почве обнаруживается абсолютный недостаток кальция.

         При мелкой двухдюймовой пахоте верхний перегнойный слой оказывает земледелию неисчислимые услуги. Нитрификация в этом случае происходит быстро и в нужном направлении.

          В Индии, где энергично проходят процессы образования нитратов и где это может быть легко наблюдаемо, нитраты всегда осаждаются на поверхности почвы.

        Каждый из нас знает, что деревянные столбы построек, закрытые в землю, гниют гораздо больше у поверхности земли, чем внизу.

         Продукты интенсивного разложения перегноя, растворенные в воде или щелочных жидкостях, промываются дождями к подпочве, проникают в нижний слой и оказывают или косвенное влияние на растворимость питательных веществ, или непосредственно сами участвуют в питании растений. Такое влияние перегнойного горизонта на питание растений оказывается несравненно большим в том случае, если он находится сверху, чем если бы перегнойный слой глубокой вспашкой смешали бы с подпочвой.

        Искусственные удобрения, как правило мелко размолоты и просеяны через сита, но, несмотря на это, как показали опыты Мерккера и других, они действуют гораздо сильнее, когда вносят в почву в водных растворах.

         Органические остатки не разделаны так мелко, они лежат в почве большими фрагментами и, следовательно, тем более не могли бы проявить полного своего действия, даже если бы воздух беспрепятственно поступал в почву. Растворяющиеся в верхнем слое продукты разложения перегноя пропитывают каждую частичку почвы, прекрасно подготавливая ее к питанию растений.

         Не менее важно и то, что состоящий из органических остатков и пористый как губка, верхний слой никогда не может ни заплывать, ни образовывать корки. После каждого теплого дождя разложение перегноя ускоряется, верхний слой вместо того, чтобы уплотняться, как это бывает при глубокой вспашке, разрыхляется, растет, как на дрожжах и гарантирует постоянный доступ воздуха к нижним слоям. В нижних слоях под могучим влиянием атмосферы разлагаются органические остатки, осаждается роса, поглощаются газы, размельчаются обломки скал, что все вместе взятое усиливает плодородие почвы и дает такие громадные урожаи, каких приверженцы глубокой вспашки не могут представить даже в мечтах.

        Конный поломник, используемый постоянно при новой системе земледелия даже при выращивании хлебных злаков, еще больше способствует аэрации почвы.

         Одним словом, нет сомнения, глубокая вспашка и прежняя система посева не могут даже частично обеспечить почву той рыхлостью и, следовательно, тем плодородием, какое ей гарантирует новая система земледелия.

      Засухи, уничтожающие культуры в степях, которые когда-то были покрыты густой растительностью, это наказание за разрушение глубокой вспашкой естественного строения верхнего плодородного слоя, также за уничтожение верхнего перегнойного горизонта, действующего на полях и в степях подобно  лесной подстилке. Сгребание подстилки губит лес, погребение в подпочве верхнего слоя губит плодородие.  Сбивание скотом, а также коса довершают пагубное действие в степях и лугах, подобно глубокой вспашке на полях, и вот перед нами готовое явление неурожая, а часто и голода.

          Мы объясняем это, согласно учению Либиха, истощением почвы, а также уничтожением лесов. Однако главная причина состоит в том, что, уничтожая верхний слой, мы вместе с тем уничтожили и рыхлость почвы. Поэтому стало невозможным поглощение почвой водяных паров из воздуха (ирригация атмосферная), а вместе с этим нарушаются и другие процессы, которые обеспечивают получение урожая.

Глава 5. Угольная кислота в почве

    Многие исследователи видят причину пышного развития растительности древнего мира в том, что тогда атмосфера была богаче угольной кислотой, чем теперь. Поэтому Либих, придерживался мнения, что, если мы желаем получить максимум урожая, в короткий вегетационный период, то мы должны искусственно обогатить атмосферу угольной кислотой.

       Опыты профессора Годлевского показали, что самый быстрый рост у растений наблюдается при содержании в воздухе от 5 до 10% угольной кислоты. Хотя Мейер в своих опытах не обнаружил заметного увеличения урожаев растений, выращиваемых в атмосфере, обогащенной угольной кислотой.

       Объемное содержание угольной кислоты в атмосфере достигает 0,0002-0,0005 частей, угольная кислота непосредственно усваивается растениями, а также способствует увеличению растворимости минеральных веществ почвы. По этим причинам ее присутствие в почве желательно. Но так как угольная кислота подавляет микроорганизмы, вызывающие нитрификацию, то с этих позиций почва должна быть свободна от угольной кислоты.

        Как видим, налицо разногласия, которые непременно следует примирить, если мы желаем получать высокие урожаи.

        В опытах Штеккорда и Петерса в почву ежедневно вводили 400 см³ угольной кислоты и 1200 см³ воздуха. В итоге эта почва дала вдвое больший урожай растений, чем та же почва, но без добавления этих газов. Следовательно, для тог, чтобы почва могла обеспечить высокий урожай, она должна содержать в себе и угольную кислоту и воздух.

           Природа превосходно разрешила этот вопрос, вследствие чего мы видим чрезвычайно обильную растительность в лесах и степях, до которых человек еще не добрался со своей культурой.

            В девственных почвах органические остатки находятся постоянно вверху, а потому они имеют достаточно воздуха и нитрификация в них происходит чрезвычайно быстро. Так профессор Костычев обратил внимание, что листья в лесу подвергаются полному разложению в течение одного года. Также энергично происходит нитрификация и в степях.

            Происходит это, кроме всего прочего, и потому, что угольная кислота, выделяющаяся при разложении органических остатков, не может вредить микроорганизмам, вызывающим разложение. Более тяжелая, чем воздух (1,5 раза) угольная кислота проникает в почву глубже, чем воздух и там оказывает свое благотворное влияние на минеральную часть почвы, перегной же разлагается при изобилии атмосферного кислорода.

              Глубокая вспашка нарушает естественное сложение плодородного слоя. Она перемещает органические остатки вглубь почвы, где кислорода не хватает, а угольной кислоты избыток. Вследствие этого нитрификация прекращается полностью или же происходит чрезвычайно медленно. Поэтому не могут ни образоваться азотистые соединения, ни разлагаться минеральные вещества почвы. Целые куски навоза годами лежат в земле не разлагаясь, земледельцы же покупают чилийскую селитру, суперфосфат и каинит. Новая система обработки, концентрируя и постоянно правильно и беспрерывно разлагаться этим остаткам при обилии воздуха.

             Образовавшаяся в верхнем слое угольная кислота, как относительно более тяжелая, опускается в нижние слои, где перегноя меньше, или его совсем нет. Там процессам нитрификации она ущерба не приносит, но оказывает положительное влияние на минеральную часть почвы, растворяя фосфориты и полевые шпаты. Тем самым она снабжает растения самыми главными после азота элементами питания – фосфором и калием.

       Находящийся в почве фосфор находится в соединениях с кальцием, железом, отчасти в виде фосфорного магния и аммиака. Фосфорнокислый кальций может быть в трех формах: трех основный, двух основный и, наконец, кислый (1 равная по весу часть кислоты на 3,2 или 1 часть основания). Последнее соединение растворяется лучше всего, но в таком виде в почве оно не встречается. Искусственное удобрение суперфосфат представлен в этой кислой формой фосфорнокислого кальция, но в почве она переходит в соединение менее растворимое. Трехосновный фосфорнокислый кальций соединение чрезвычайно трудно растворимое: но одну часть сухой соли необходимо 331847 частей воды, а на одну часть влажной соли – 12610 частей воды. 

        Поэтому при изобилии фосфорнокислых соединений почва часто бывает не плодородной, если только умелой обработкой мы не сможем увеличить растворимость соединений фосфора. Задача эта решается легче, если вода, находящаяся в почве, насыщена угольной кислотой. Тогда для растворения 1 части трехосновного фосфорнокислого кальция (наиболее трудно растворимого) требуется воды только 1250 частей, т.е. почти в 30 раз меньше.

         В воде, насыщенной угольной кислотой, растворяется также и фосфорнокислое железо. Фосфорнокислый магний растворяется в сернокислом аммиаке и азотнокислом калии, присутствие которых в почве зависит также от правильного разложения перегноя, что может гарантировать только исключительно наша система.

          Снабжающий растения калием полевой шпат принадлежит к простым минералам, так как ¾ древних горных пород сложены полевым шпатом, который после выветривания образует преимущественно плодородную почву. Полевой шпат представляет собой двойную соль кремнекислоты. Чаще всего это бывает глинистый кремнезем в соединении с кремнеземом калиевым, натриевым или кальциевым. В соответствии с минералом, входящим в состав полевого шпата, он разделяется на калиевый (ортоклаз), натриевый (альбит) и кальциевый (анортит). Смесь альбита с 3 частями анортита называется лабродором, смесь же в другой пропорции называется омпоклазом. Самым главным для земледелия и, к счастью, самым распространенным является калиевый полевой шпат, ортоклаз, содержащий в себе, главным образом, глинистый и калиевый кремнезем и лишь отчасти – кремнезем натриевый и кальциевый.

       Полевой шпат выветривается довольно легко. Самый важный для нас калиевый и глинистый полевой шпат под влиянием угольной кислоты разлагается на нерастворимый глинистый кремнезем (глину) и на кремнезем, высвобождая при этом калий.

   Процесс этот совершается следующим образом:

 

Полевой шпат содержит:

Глина, образующ., из него содержит:

 

Выделяется:

Глины

18,1%

18,1%

-

Кремнезема

65,2%

21,7%

43,5%

Калия

16,7%

-

16,7%

Воды

-

6,3%

-

ИТОГО:

100,0%

46,1%

60,2%

      После выветривания полевого шпата под влиянием угольной кислоты, новообразовавшийся калий растворяется в воде и служит питанием для растений.

      Как мы видим, только исключительно новая система обработки может обеспечить в почве максимум угольной кислоты за счет быстрого разложения верхнего слоя, богатого органическими остатками. Только при  новой системе обработки проникающая вглубь угольная кислота находится в надлежащем месте, не мешает нитрификации и должным образом выполняет свою функцию – делать доступными для растений питательные вещества, содержащиеся в почве.

       И в отношении угольной кислоты, как и во всем другом, наша система обработки имеет решительное преимущество перед глубокой вспашкой.

Глава 6. Температура почвы

      При обработке почвы мы должны обращать внимание на температуру главным образом с двух позиций: 1) с позиции атмосферной ирригации и 2) с позиции нитрификации.

      Атмосферная ирригация, т.е. конденсация росы в почве, может происходить только тогда, когда температура почвы ниже, чем температура воздуха. Более подробно этот вопрос мы рассмотрим в  отдельной главе, теперь же отметим, что, чем ниже температура почвы, тем больше росы в ней будет осаждаться.

       Следовательно, с позиции атмосферной ирригации температура почвы должна быть максимально низкой. Такая низкая температура преобладает в почве под лесом. От сильного нагревания почву защищают: 1) затеняющие листья деревьев и 2) лесная подстилка. Поэтому в лесах почва так обильно конденсирует росу, что воды хватает не только на громадные потребности деревьев. Часто избыток влаги отводится из леса в виде многочисленных родников и ручьев, которые после вырубки леса, как правило, высыхают.

         Следовательно, если бы речь шла только об обогащении почвы влагой, то достаточно было бы обеспечить ее рыхлость и низкую температуру. Но задача усложняется тем, что нитрификация не может происходить при низкой температуре. Она возможна в интервале от 10° до 45°.

          Итак, земледельцу предстоит решить довольно трудную: поддерживать в почве такую температуру, чтобы в ней одновременно могли происходить и нитрификация и атмосферная ирригация, т.е. чтобы почва не нагревалась выше 45° и не охлаждаясь слишком, так как это задерживает и нитрификацию, и рост растений.

        Глубокая вспашка в решении этой задачи совершенно бессильна. Поэтому Дегерен жалуется то на засуху, то на  слабую нитрификацию, вследствие чего богатую азотом почву приходится еще удобрить покупной чилийской селитрой.

         «Количество азота, пишет Дегерен, которое образуется на 1 га при нитрификации следующее:

Весной

17,8 кг

Летом

26,4 кг

Осенью

40,6 кг

Зимой

11,8 кг

   Мы уже говорили, продолжает Дегерен, что для хорошего урожая требуется в среднем 100-120 кг/га соединений азота. Очевидно, что это количество азота должно быть усвоено растениями в течение весны и начала лета, так как в конце июня пшеница и овес уже не усваивают азот.

       Что касается свеклы, то она, хотя и усваивает азотистые соединения, образующие позже, концентрируя их в корнеплодах, но вследствие этого получаются только одни неудобства, так как эти соединения только вредят животным и затрудняют производство сахара.

         В действительности полезны только те азотистые соединения, которые образуются весной или в начале лета, так как в конце лета, зимой и осенью азотистые соединения вымываются дождями, уходят в реки и моря и, одним словом, для растений становятся утраченными.

         Приведенные выше цифры показывают, что нитрификация, происходящая весной недостаточна. Причину этого явления не трудно понять. Хотя земля в это время бывает довольно влажная, но зато температура почвы не достигает того уровня, при котором микроорганизмы начинают действовать самым энергичным образом, потому что эти микроорганизмы очень медленно пробуждаются от зимней спячки и постепенно набираются сил, значительно ослабевших в зимние холода. В то время как некоторые микроорганизмы почвы, например, разлагающие жиры, развиваются в течение 24-30 часов, развитие микробов, вызывающих нитрификацию, происходит крайне медленно.

          Проба почвы, взятая зимой с поля и помещенная в благоприятные температурные условия, не может образовывать заметного количества азотистых соединений в течение нескольких недель. Чтобы дополнить недостающую нитрификацию перегноя и уравновесить медленную деятельность микроорганизмов, мы должны добавлять в почву азотистые вещества в виде удобрения. Единственно благодаря тому, что нитрификация весной не проходит в надлежащей степени, целый флот занят доставкой в Европу селитры, которая с большим трудом добывается на берегах Великого океана. В 1894 году привезено селитры 974000 тонн на сумму 205000000».

       Итак, мы видим насколько вредно то вымораживание почвы, которое рекомендуется в каждом руководстве по глубокой вспашке. Наставления к предзимней вспашке и наставления к изготовлению хорошего кирпича совершенно одинаковы – и в том и в другом случае советуются надлежащее промерзание почвы «в остром пласте» (взмет пласта).

         В результате это промерзание даст хороший кирпич. Но пагубно действует на почву. Поэтому там, где морозы более чувствительны, чем у нас, как, например, в Архангельской губернии, земледельцы никогда не оставляют почвы и «в остром плате». Архангельский мужик Дегерена не читает, но печальный опыт научил его, что перемерзлая земля хлеба не родит.

       У нас вред, наносимый морозами, не так заметен, а потому «острый пласт» на зиму считается идеалом обработки как в сельскохозяйственной литературе, так и на практике. Результаты мы видим в цитируемых выдержках из Дегерена. Благодаря промерзанию почве не хватает азотистых соединений и именно в то время, когда молодые растения больше всего нуждаются в этих питательных веществах.

         Опыт показывает, что селитра дает лучший эффект, когда ее вносят под молодые растения. Поэтому земледелец должен приложить все силы на то, чтобы почва весной прогревалась как можно скорее, ибо только тогда мы можем рассчитывать на нитрификацию.

          При глубокой вспашке этой цели достигнуть трудно. Поднятые пласты сильно промерзают зимой и быстро засыхают весной. Чтобы не допустить высыхания (что тоже делает нитрификацию невозможной) мы спешим бороновать ее. Под рыхлым слоем земля не может согреться и в результате – недостаток азотистых соединений. Первый хороший дождь образует корку, что тоже задерживает нитрификацию и, в конце концов, несмотря на огромные запасы азота в почве, растения страдают от его недостатка.

             Чтобы ускорить прогревание почвы весной, мы можем использовать каток.  Уплотненная земля днем лучше нагревается солнцем и, с другой стороны, меньше охлаждается ночью, так как ровная поверхность отдает тепла меньше. Так гладкий сосуд с блестящей поверхностью дольше сохраняет тепло, чем такой же сосуд с шероховатой поверхностью.

           Но пока земля обсохнет настолько, что ее можно прикатывать, то и время уходит и влага теряется.

           Поэтому гораздо умнее поступает архангельский крестьянин, который боронует зябь с осени. Земля оседает, весной легче в нее проникает солнечное тепло, гладкая поверхность уменьшает теплоотдачу ночью и, в конце концов, в этом суровом климате нитрификация весной начинается вовремя.

         Следует только заботиться, чтобы земля не пересыхала, так как уплотненная, капиллярная почва быстрее испаряет влагу, чем почва, покрытая слое рыхлой земли. Поэтому, как только температура почвы поднимается до надлежащей степени, почву следует сейчас же пробороновать, или пройти экстирпатором на 2 дюйма в глубину, а затем пустить бороны.

          При дальнейшем же ходе работ конный полольник, постоянно применяемый при новой системе земледелия, уже беспрерывно поддерживает рыхлость верхнего слоя.

          При такой обработке нитрификация начинается весной в надлежащее время, а затем рыхлый слой земли защищает почву от высыхания и чрезмерного нагревания, что также стабилизирует нитрификацию. Температура почвы держится на том уровне, когда одновременно может происходить и нитрификация, и атмосферная ирригация.

          Осеннее боронование вспаханной почвы я постоянно практикую в своем хозяйстве, оставляя для сравнения, часть не заборованной.  Ежегодно урожай с осени зяби бывает выше.

          В прошлом году (1897) заметно выделялась кукуруза, посеянная по заборованной с осени зяби, тогда как рядом на незаборованной была гораздо хуже.

          Пора перестать преувеличивать влияние мороза на минеральную часть почвы, что делают приверженцы глубокой вспашки, потому что продукты разложения перегноя гораздо интенсивнее действует на скелет почвы, чем морозы, которые, затормаживая деятельность бактерий, в итоге приносят культурной почве больше вреда, чем пользы.

Овсинский И.Е. Новая система земледелия. Часть 2

Назад <<<- Часть 1                                                                                                  Далее - >>> Часть 3

 

Спецпредложение

     Предлагаем разработку "Индивидуального инвестиционно - технологического проекта технологической реструктуризации сельскохозяйственного производства", включающего: технологический аудит, анализ выявленных нарушений, подбор наиболее эффективных технологий, технологические расчеты по обоснованию мероприятий преобразования Вашего существующего производства в высокоэффективный бизнес (собственно технологической реструктуризации), а также разработку бизнес-плана реализации Проекта.

   Предлагаем консультационное сопровождение Вашего бизнеса до выхода на проектные показатели по продуктивности земли и животных, себестоимости производимой продукции и уровню рентабельности предприятия в целом.